Optimization of foam-filled double ellipse tubes under multiple loading cases

نویسندگان

  • Qiang Gao
  • Liangmo Wang
  • Yuanlong Wang
  • Fuxiang Guo
  • Zunzhi Zhang
چکیده

In this paper, a novel foam-filled double ellipse tube (F-DET) is proposed. First, the circle and ellipse tubes with three different configurations(hollow, foam-filled, double foam-filled) are investigated under axial and oblique impact by using the nonlinear finite element code LS-DYNA. The numerical results showed that the F-DET tube has the best crashworthiness performance than tubes with other configurations. Then to optimize the F-DET tube, the Kriging model about the radial rate f, thickness of wall t and foam density ρ f is constructed. Based on the Kriging model, the multiobjective particle swarm optimization (MOPSO) algorithm is utilized to achieve the optimized F-DET tube, foam-filled ellipse(F-ET) tube and foam-filled double circle(F-DCT) tube on the maximizing specific energy absorption (SEA) and minimizing peak crush force (PCF) under multiple loading angles. It can be found that the F-DET tube has better crashworthiness performance than F-ET tube and F-DCT tube. This indicates F-DET tube can be a potential energy absorber under the multiple loading cases. © 2016 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Crashworthiness Analysis of Graded Layered Foam- Filled Tubes Under Axial Loading

In this article, the results of a study on energy absorption characteristics of foam-filled thin-walled structures with finite element analysis have been presented. Four specimens of thin walled structures have been filled with uniform foam and three specimens have been filled with linear four-layered foam. Also, eight layers HLH (High-Low-High) and eight layers LHL (Low-High-Low) have been sim...

متن کامل

Parametric Study of the Empty and Foam-Filled End-Capped Conical Tubes under quasi Static and Dynamic impact Loads

This paper investigates the parametric study of the empty and foam-filled end-capped tubes under quasi static and dynamic loadings. The numerical crash analysis of the empty and foam-filled tubes was performed using the explicit finite element code ABAQUS- explicit. Satisfactory agreements were generally achieved between the numerical and experimental results. In order to determine the crash be...

متن کامل

Experimental Study on Double-Walled Copper and Carbon/Epoxy Composite Tubes under the Axial Loading

This paper investigates axial compression process of multi-layered tubes with circular cross-section under the axial loading in the quasi-static condition using experimental method. Some specimens are prepared in seven different groups, namely; empty carbon/epoxy composite tubes, solid carbon/epoxy composite rods, empty copper tubes, composite tubes with silicon sealant filler, concentrically s...

متن کامل

Multi-objective Crashworthiness Optimization of the Aluminum Foam-filled Tubes

In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the...

متن کامل

Multi-response Optimization of Grooved Circular Tubes Filled with Polyurethane Foam as Energy Absorber

The main objective of this research is to improvethe design and performance of the polyurethane foam-filled thin-walled aluminum grooved circular tubes using multi-response optimization (MRO) technique. The tubes are shaped with the inner and the outer circular grooves at different positions along the axis. For this aim, several numerical simulations using ABAQUS finite element explicit code ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2016